If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-6y-9=0
a = 5; b = -6; c = -9;
Δ = b2-4ac
Δ = -62-4·5·(-9)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{6}}{2*5}=\frac{6-6\sqrt{6}}{10} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{6}}{2*5}=\frac{6+6\sqrt{6}}{10} $
| t²-2t-8=0 | | 3^(x)+1=4^x+2 | | 3^x+1=4x+2 | | 3x+1=4^x+2 | | 3x^2+2x+1=180° | | 0.075=0.3x/(1.3+x) | | 343^-1(x-12)=(49)^3x | | m5m+7=17 | | 5(x-2)-10=-2(x+3)+19x | | 20+2x=4-6x | | 3x^2-30x-75=0 | | 4=k(0+2)(0+4) | | (4x2+-9)-2(2x-3)+x(2x-3)=0 | | (2x-6)(4x+20)=0 | | 2(x-3)-9=17 | | 6x-5=27x+3 | | (1-x)(x-3)=0 | | 90+30+3y=180 | | -4x^2+1=-19 | | 8-3(2x+4)-2x=-19 | | 5r+3=2r-6 | | 6m^2-15m=0 | | 2(2x-7)=4x+4 | | (X+2)(x+5)=(x+3)^2 | | 2x-8+5x-20=4x+2 | | n2+10n+24=0 | | 4x2-20X-2=0 | | 2x+18=x+23 | | 12x2+3x-9=0 | | 7x+23=5x+75 | | 2(a-3)-5a+3=12 | | 30+90+3y=180 |